172 lines
4.8 KiB
Python
172 lines
4.8 KiB
Python
from __future__ import print_function
|
|
import sys
|
|
import cv2 as cv
|
|
import numpy as np
|
|
from hsvfilter import HsvFilter
|
|
|
|
use_mask = False
|
|
img = None
|
|
templ = None
|
|
mask = None
|
|
image_window = "Source Image"
|
|
result_window = "Result window"
|
|
match_method = 3
|
|
max_Trackbar = 5
|
|
|
|
|
|
def main():
|
|
|
|
|
|
global img
|
|
global templ
|
|
img = cv.imread("equip/rings/test_screen.jpg", cv.IMREAD_COLOR)
|
|
templ = cv.imread("equip/rings/ring_1_32.jpg", cv.IMREAD_COLOR)
|
|
|
|
hsv = HsvFilter(13, 40, 85, 135, 255, 255, 0, 0, 55, 53)
|
|
#img = apply_hsv_filter(img, hsv)
|
|
#templ = apply_hsv_filter(templ, hsv)
|
|
|
|
|
|
global use_mask
|
|
use_mask = True
|
|
global mask
|
|
mask = cv.imread("equip/rings/ring_1_32-mask.png", cv.IMREAD_COLOR)
|
|
|
|
|
|
cv.namedWindow(image_window, cv.WINDOW_AUTOSIZE)
|
|
cv.namedWindow(result_window, cv.WINDOW_AUTOSIZE)
|
|
|
|
trackbar_label = 'Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED'
|
|
cv.createTrackbar(trackbar_label, image_window, match_method, max_Trackbar, MatchingMethod)
|
|
|
|
MatchingMethod(match_method)
|
|
|
|
cv.waitKey(0)
|
|
return 0
|
|
|
|
def draw_rectangles(haystack_img, rectangles):
|
|
# these colors are actually BGR
|
|
line_color = (0, 255, 0)
|
|
line_type = cv.LINE_4
|
|
pic = None
|
|
for (x, y, w, h) in rectangles:
|
|
# determine the box positions
|
|
top_left = (x, y)
|
|
bottom_right = (x + w, y + h)
|
|
# draw the box
|
|
cv.rectangle(haystack_img, top_left, bottom_right, line_color, lineType=line_type)
|
|
|
|
#pic = haystack_img[y:y + h, x:x + w]
|
|
|
|
return haystack_img
|
|
|
|
def shift_channel(c, amount):
|
|
if amount > 0:
|
|
lim = 255 - amount
|
|
c[c >= lim] = 255
|
|
c[c < lim] += amount
|
|
elif amount < 0:
|
|
amount = -amount
|
|
lim = amount
|
|
c[c <= lim] = 0
|
|
c[c > lim] -= amount
|
|
return c
|
|
|
|
def apply_hsv_filter(original_image, hsv_filter):
|
|
# convert image to HSV
|
|
hsv = cv.cvtColor(original_image, cv.COLOR_BGR2HSV)
|
|
|
|
|
|
# add/subtract saturation and value
|
|
h, s, v = cv.split(hsv)
|
|
s = shift_channel(s, hsv_filter.sAdd)
|
|
s = shift_channel(s, -hsv_filter.sSub)
|
|
v = shift_channel(v, hsv_filter.vAdd)
|
|
v = shift_channel(v, -hsv_filter.vSub)
|
|
hsv = cv.merge([h, s, v])
|
|
|
|
# Set minimum and maximum HSV values to display
|
|
lower = np.array([hsv_filter.hMin, hsv_filter.sMin, hsv_filter.vMin])
|
|
upper = np.array([hsv_filter.hMax, hsv_filter.sMax, hsv_filter.vMax])
|
|
# Apply the thresholds
|
|
mask = cv.inRange(hsv, lower, upper)
|
|
result = cv.bitwise_and(hsv, hsv, mask=mask)
|
|
|
|
# convert back to BGR for imshow() to display it properly
|
|
img = cv.cvtColor(result, cv.COLOR_HSV2BGR)
|
|
|
|
return img
|
|
|
|
def MatchingMethod(param):
|
|
global match_method
|
|
match_method = param
|
|
|
|
img_display = img.copy()
|
|
|
|
method_accepts_mask = (cv.TM_SQDIFF == match_method or match_method == cv.TM_CCORR_NORMED)
|
|
if (use_mask and method_accepts_mask):
|
|
result = cv.matchTemplate(img, templ, match_method, None, mask)
|
|
else:
|
|
result = cv.matchTemplate(img, templ, match_method)
|
|
#_minVal, _maxVal, minLoc, maxLoc = cv.minMaxLoc(result, None)
|
|
cv.normalize(result, result, 0, 1, cv.NORM_MINMAX, -1)
|
|
#_minVal, _maxVal, minLoc, maxLoc = cv.minMaxLoc(result, None)
|
|
|
|
locations = np.where(result >= 0.91)
|
|
locations = list(zip(*locations[::-1]))
|
|
|
|
needle_w = templ.shape[1]
|
|
needle_h = templ.shape[0]
|
|
|
|
find_num = 20
|
|
idx_1d = np.argpartition(result.flatten(), -find_num)[-find_num:]
|
|
#new_res = result.flatten()[idx_1d]
|
|
#new_res.append()
|
|
idx_2d = np.unravel_index(idx_1d, result.shape)
|
|
|
|
rectangles = []
|
|
for i in range(0, len(idx_2d[0]), 1):
|
|
y = int(idx_2d[0][i])
|
|
x = int(idx_2d[1][i])
|
|
rect = [x, y, needle_w, needle_h]
|
|
# Add every box to the list twice in order to retain single (non-overlapping) boxes
|
|
rectangles.append(rect)
|
|
rectangles.append(rect)
|
|
|
|
|
|
for loc in locations:
|
|
rect = [int(loc[0]), int(loc[1]), needle_w, needle_h]
|
|
# Add every box to the list twice in order to retain single (non-overlapping) boxes
|
|
#rectangles.append(rect)
|
|
#rectangles.append(rect)
|
|
|
|
|
|
rectangles, weights = cv.groupRectangles(rectangles, groupThreshold=1, eps=0.5)
|
|
keep_rects = []
|
|
for rect in rectangles:
|
|
w = rect[0]
|
|
h = rect[1]
|
|
x = rect[2] + w
|
|
y = rect[3] + h
|
|
screenshot_pos = img_display[h:y, w:x] # (w, h, x+w, y+h)
|
|
result2 = cv.matchTemplate(screenshot_pos, templ, 5)
|
|
_minVal2, _maxVal2, minLoc2, maxLoc2 = cv.minMaxLoc(result2, None)
|
|
if _maxVal2 >= 0.5:
|
|
keep_rects.append(rect)
|
|
print("matching error")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
res1 = draw_rectangles(img_display, keep_rects)
|
|
res2 = draw_rectangles(img, keep_rects)
|
|
|
|
cv.imshow(image_window, res1)
|
|
cv.imshow(result_window, res2)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |