Files
Litcraft_Python_B/tresh_util.py
2022-04-29 02:06:44 +02:00

94 lines
2.4 KiB
Python

import cv2
import numpy as np
def super_tresh_main(img):
image = img
# cv2.imshow("Image", image)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# cv2.imshow("gray", gray)
blur = cv2.GaussianBlur(gray, (5, 5), 0)
# cv2.imshow("blur", blur)
thresh = cv2.adaptiveThreshold(blur, 255, 1, 1, 11, 2)
# thresh = cv2.bitwise_not(thresh)
# cv2.imshow("thresh", thresh)
# cv2.waitKey()
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
max_area = 0
c = 0
for i in contours:
area = cv2.contourArea(i)
if area > 1000:
if area > max_area:
max_area = area
best_cnt = i
image = cv2.drawContours(image, contours, c, (0, 255, 0), 1)
c += 1
mask = np.zeros((gray.shape), np.uint8)
cv2.drawContours(mask, [best_cnt], 0, 255, -1)
cv2.drawContours(mask, [best_cnt], 0, 0, 1)
# cv2.imshow("mask", mask)
out = np.zeros_like(gray)
out[mask == 255] = gray[mask == 255]
# cv2.imshow("New image", out)
blur = cv2.GaussianBlur(out, (5, 5), 0)
# cv2.imshow("blur1", blur)
thresh = cv2.adaptiveThreshold(blur, 255, 1, 1, 11, 2)
return cv2.bitwise_not(thresh)
def super_tresh_needle(img):
image = img
# cv2.imshow("Image", image)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# cv2.imshow("gray", gray)
blur = cv2.GaussianBlur(gray, (5, 5), 0)
# cv2.imshow("blur", blur)
thresh = cv2.adaptiveThreshold(blur, 255, 1, 1, 11, 2)
return cv2.bitwise_not(thresh)
'''
# cv2.imshow("thresh", thresh)
# cv2.waitKey()
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
max_area = 0
c = 0
for i in contours:
area = cv2.contourArea(i)
if area > 1000:
if area > max_area:
max_area = area
best_cnt = i
image = cv2.drawContours(image, contours, c, (0, 255, 0), 1)
c += 1
mask = np.zeros((gray.shape), np.uint8)
cv2.drawContours(mask, [best_cnt], 0, 255, -1)
cv2.drawContours(mask, [best_cnt], 0, 0, 1)
# cv2.imshow("mask", mask)
out = np.zeros_like(gray)
out[mask == 255] = gray[mask == 255]
# cv2.imshow("New image", out)
blur = cv2.GaussianBlur(out, (5, 5), 0)
# cv2.imshow("blur1", blur)
thresh = cv2.adaptiveThreshold(blur, 255, 1, 1, 11, 2)
return cv2.bitwise_not(thresh)
'''