import cv2 import numpy as np image = cv2.imread("dig/digging.jpg") cv2.imshow("Image", image) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) cv2.imshow("gray", gray) blur = cv2.GaussianBlur(gray, (5,5), 0) cv2.imshow("blur", blur) thresh = cv2.adaptiveThreshold(blur, 255, 1, 1, 11, 2) #thresh = cv2.bitwise_not(thresh) cv2.imshow("thresh", thresh) #cv2.waitKey() contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) max_area = 0 c = 0 for i in contours: area = cv2.contourArea(i) if area > 1000: if area > max_area: max_area = area best_cnt = i image = cv2.drawContours(image, contours, c, (0, 255, 0), 1) c+=1 mask = np.zeros((gray.shape),np.uint8) cv2.drawContours(mask,[best_cnt],0,255,-1) cv2.drawContours(mask,[best_cnt],0,0,1) cv2.imshow("mask", mask) out = np.zeros_like(gray) out[mask == 255] = gray[mask == 255] cv2.imshow("New image", out) blur = cv2.GaussianBlur(out, (5,5), 0) cv2.imshow("blur1", blur) thresh = cv2.adaptiveThreshold(blur, 255, 1, 1, 11, 2) thresh = cv2.bitwise_not(thresh) cv2.imshow("thresh1", thresh) contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) squares = [] c = 0 for i in contours: area = cv2.contourArea(i) cnt_len = cv2.arcLength(i, True) cnt = cv2.approxPolyDP(i, 0.01 * cnt_len, True) if area > 1000/2: squares.append(cnt) #cv2.drawContours(image, contours, c, (0, 255, 0), 1) c+=1 cv2.drawContours(image, squares, -1, (0, 255, 0), 1) cv2.imshow("Final Image", image) cv2.waitKey(0) cv2.destroyAllWindows()