import cv2 import numpy as np def angle_cos(p0, p1, p2): d1, d2 = (p0-p1).astype('float'), (p2-p1).astype('float') return abs( np.dot(d1, d2) / np.sqrt( np.dot(d1, d1)*np.dot(d2, d2) ) ) def find_squares(img): squares = [] gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) # cv2.imshow("gray", gray) gaussian = cv2.GaussianBlur(gray, (5, 5), 0) thresh = cv2.adaptiveThreshold(gaussian, 255, 1, 1, 11, 2) #temp,bin = cv2.threshold(gaussian, 80, 255, cv2.THRESH_BINARY) cv2.imshow("thresh", thresh) contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) cv2.drawContours( gray, contours, -1, (0, 255, 0), 3 ) #cv2.imshow('contours', gray) for cnt in contours: cnt_len = cv2.arcLength(cnt, True) cnt = cv2.approxPolyDP(cnt, 0.02*cnt_len, True) if cv2.contourArea(cnt) > 1000 : #cnt = cnt.reshape(-1, 2) #max_cos = np.max([angle_cos( cnt[i], cnt[(i+1) % 4], cnt[(i+2) % 4] ) for i in range(4)]) #if max_cos < 0.1: squares.append(cnt) return squares if __name__ == '__main__': img = cv2.imread('equip/main_screen.jpg') #cv2.imshow("origin", img) squares = find_squares(img) print("Find %d squres" % len(squares)) cv2.drawContours( img, squares, -1, (0, 255, 0), 3 ) cv2.imshow('squares', img) cv2.waitKey()