cleanup
BIN
dig/Brown0.jpg
|
Before Width: | Height: | Size: 1.2 KiB |
BIN
dig/D1.jpg
|
Before Width: | Height: | Size: 1.6 KiB |
BIN
dig/D2.jpg
|
Before Width: | Height: | Size: 1.9 KiB |
BIN
dig/D3.jpg
|
Before Width: | Height: | Size: 1.5 KiB |
BIN
dig/D4.jpg
|
Before Width: | Height: | Size: 1.9 KiB |
BIN
dig/D5.jpg
|
Before Width: | Height: | Size: 2.1 KiB |
BIN
dig/D6.jpg
|
Before Width: | Height: | Size: 1.9 KiB |
BIN
dig/D7.jpg
|
Before Width: | Height: | Size: 2.3 KiB |
BIN
dig/H1.jpg
|
Before Width: | Height: | Size: 2.5 KiB |
BIN
dig/H2.jpg
|
Before Width: | Height: | Size: 2.4 KiB |
BIN
dig/H3.jpg
|
Before Width: | Height: | Size: 2.2 KiB |
BIN
dig/H4.jpg
|
Before Width: | Height: | Size: 2.4 KiB |
BIN
dig/digging.jpg
|
Before Width: | Height: | Size: 1.8 MiB |
|
Before Width: | Height: | Size: 12 KiB |
BIN
dig/wtf.jpg
|
Before Width: | Height: | Size: 1.4 KiB |
182
digging_main.py
@@ -1,182 +0,0 @@
|
||||
import random
|
||||
from time import time
|
||||
from window_capture import WindowCapture
|
||||
from vision import Vision
|
||||
import cv2 as cv
|
||||
import pytesseract
|
||||
from hsvfilter import HsvFilter
|
||||
from config_file import UserConfigs
|
||||
# import pyautogui
|
||||
import pydirectinput
|
||||
import keyboard
|
||||
from tresh_util import super_tresh_main, super_tresh_needle
|
||||
|
||||
|
||||
def run():
|
||||
# initialize the user-class
|
||||
config = UserConfigs()
|
||||
|
||||
# PLOT_TO_USE = "business"
|
||||
PLOT_TO_USE = "main_plot"
|
||||
GRID_SIZE_WIDTH = 30
|
||||
GRID_SIZE_DEPTH = 24
|
||||
DIG_TIME = 150
|
||||
|
||||
# initialize the StunWindowCapture class
|
||||
try:
|
||||
capture_window = WindowCapture(
|
||||
None, "dig", config)
|
||||
video_mode = False
|
||||
except:
|
||||
# StunWindowCapture.list_window_names()
|
||||
# print("Game not running, switching to video mode")
|
||||
# capture_window = cv.VideoCapture("snip_slam.mp4")
|
||||
video_mode = True
|
||||
|
||||
# plot_to_use = "business"
|
||||
plot_to_use = "main_plot"
|
||||
|
||||
# initialize the StunVision class
|
||||
vision_stun = Vision()
|
||||
# initialize the StunOverlay class
|
||||
hsv_filter = HsvFilter(0, 0, 124, 15, 255, 168, 0, 255, 0, 0)
|
||||
|
||||
loop_time = time()
|
||||
event_time = 0.0
|
||||
pointstore = []
|
||||
max_results = 0
|
||||
pause = True
|
||||
while True:
|
||||
if keyboard.is_pressed('p') == True:
|
||||
pause = True
|
||||
print('q pressed')
|
||||
elif keyboard.is_pressed('o') == True:
|
||||
pause = False
|
||||
print('o pressed')
|
||||
if pause:
|
||||
# cv.waitKey(500)
|
||||
print("pausing")
|
||||
continue
|
||||
|
||||
if video_mode:
|
||||
break
|
||||
else:
|
||||
try:
|
||||
# get an updated image of the game
|
||||
screenshot = capture_window.get_screenshot()
|
||||
# screenshot = cv.imread("buffbar.jpg")
|
||||
except:
|
||||
capture_window.release()
|
||||
print("Game window not available - shutting down application")
|
||||
break
|
||||
# cv.imshow("screenshot", screenshot)
|
||||
# cv.waitKey(150)
|
||||
# continue
|
||||
|
||||
needles = []
|
||||
if PLOT_TO_USE == "business":
|
||||
needles.append(cv.imread("dig/Brown0.jpg", cv.IMREAD_UNCHANGED))
|
||||
needles.append(cv.imread("dig/1.jpg", cv.IMREAD_UNCHANGED))
|
||||
needles.append(cv.imread("dig/2.jpg", cv.IMREAD_UNCHANGED))
|
||||
needles.append(cv.imread("dig/3.jpg", cv.IMREAD_UNCHANGED))
|
||||
needles.append(cv.imread("dig/4.jpg", cv.IMREAD_UNCHANGED))
|
||||
else:
|
||||
needles.append(cv.imread("dig/H1.jpg", cv.IMREAD_UNCHANGED))
|
||||
needles.append(cv.imread("dig/H2.jpg", cv.IMREAD_UNCHANGED))
|
||||
needles.append(cv.imread("dig/H3.jpg", cv.IMREAD_UNCHANGED))
|
||||
needles.append(cv.imread("dig/H4.jpg", cv.IMREAD_UNCHANGED))
|
||||
needles.append(cv.imread("dig/D1.jpg", cv.IMREAD_UNCHANGED))
|
||||
needles.append(cv.imread("dig/D2.jpg", cv.IMREAD_UNCHANGED))
|
||||
needles.append(cv.imread("dig/D3.jpg", cv.IMREAD_UNCHANGED))
|
||||
needles.append(cv.imread("dig/D3.jpg", cv.IMREAD_UNCHANGED))
|
||||
needles.append(cv.imread("dig/D4.jpg", cv.IMREAD_UNCHANGED))
|
||||
needles.append(cv.imread("dig/D5.jpg", cv.IMREAD_UNCHANGED))
|
||||
needles.append(cv.imread("dig/D6.jpg", cv.IMREAD_UNCHANGED))
|
||||
needles.append(cv.imread("dig/D7.jpg", cv.IMREAD_UNCHANGED))
|
||||
|
||||
for needle in needles:
|
||||
# do object detection
|
||||
screenshot = capture_window.get_screenshot()
|
||||
rectangles = vision_stun.find(screenshot, needle, 0.8, 1)
|
||||
# draw the detection results onto the original image
|
||||
if len(rectangles) == 0:
|
||||
continue
|
||||
#output_image = vision_stun.draw_rectangles(screenshot, rectangles)
|
||||
#cv.imshow("output_image", output_image)
|
||||
#cv.waitKey(150)
|
||||
|
||||
# only trigger ocr reading if a stun is detected
|
||||
points = vision_stun.get_click_points(rectangles)
|
||||
for point in points:
|
||||
# 46 + 1 * 30 1410 == 1815 - 405 return [1410, 1128, 402, 22]
|
||||
# 44 + 1 * 30 1350 == 1790 - 440
|
||||
# left_border = 402, 432
|
||||
# right_border = 1812, 1782
|
||||
# upper_border = 22, 50
|
||||
# lower_border = 1150, 1120
|
||||
|
||||
size = rectangles[0][2] + 1
|
||||
|
||||
left = int(round(rectangles[0][0] / size, 0)) # 4
|
||||
down = int(round(rectangles[0][1] / size, 0)) # 23
|
||||
offset_left = config.returnDiggingWindowPos()[2]
|
||||
offset_down = config.returnDiggingWindowPos()[3]
|
||||
# 167 1055 start
|
||||
# 3x47 left 26x right to 30
|
||||
# 1x down 22x up to 24
|
||||
|
||||
# start 167, end 167 - (47 * 3), step -47
|
||||
start_left = point[0] - (size * left)
|
||||
start_up = point[1] - (size * down)
|
||||
for f in range(start_up, start_up + (size * GRID_SIZE_DEPTH), size):
|
||||
for i in range(start_left, start_left + (size * GRID_SIZE_WIDTH), size):
|
||||
pydirectinput.moveTo(i + offset_left, f + offset_down)
|
||||
pydirectinput.mouseDown()
|
||||
w = random.randint(1, 50)
|
||||
cv.waitKey(DIG_TIME + w)
|
||||
pydirectinput.mouseUp()
|
||||
if keyboard.is_pressed('p') == True or pause == True:
|
||||
pause = True
|
||||
break
|
||||
|
||||
if PLOT_TO_USE == "main_plot":
|
||||
screenshot = capture_window.get_screenshot()
|
||||
rectangles = vision_stun.find(screenshot, cv.imread("dig/ok_button.jpg", cv.IMREAD_UNCHANGED), 0.5,
|
||||
1)
|
||||
# draw the detection results onto the original image
|
||||
output_image = vision_stun.draw_rectangles(screenshot, rectangles)
|
||||
if len(rectangles) == 1:
|
||||
pointis = vision_stun.get_click_points(rectangles)
|
||||
for pointi in pointis:
|
||||
pydirectinput.moveTo(pointi[0] + offset_left, pointi[1] + offset_down)
|
||||
pydirectinput.mouseDown()
|
||||
w = random.randint(1, 50)
|
||||
cv.waitKey(DIG_TIME + w)
|
||||
pydirectinput.mouseUp()
|
||||
|
||||
if keyboard.is_pressed('p') == True or pause == True:
|
||||
pause = True
|
||||
break
|
||||
if keyboard.is_pressed('p') == True or pause == True:
|
||||
pause = True
|
||||
break
|
||||
if keyboard.is_pressed('p') == True or pause == True:
|
||||
pause = True
|
||||
break
|
||||
if keyboard.is_pressed('p') == True or pause == True:
|
||||
pause = True
|
||||
break
|
||||
if keyboard.is_pressed('p') == True or pause == True:
|
||||
pause = True
|
||||
break
|
||||
|
||||
|
||||
|
||||
# debug the loop rate
|
||||
print('FPS {}'.format(1 / (time() - loop_time)))
|
||||
loop_time = time()
|
||||
cv.waitKey(150)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
run()
|
||||
BIN
equip/chest_1_32.jpg
Normal file
|
After Width: | Height: | Size: 2.6 KiB |
BIN
equip/chest_2_32.jpg
Normal file
|
After Width: | Height: | Size: 2.6 KiB |
BIN
equip/chest_3_32.jpg
Normal file
|
After Width: | Height: | Size: 2.4 KiB |
BIN
equip/coin_1_32.jpg
Normal file
|
After Width: | Height: | Size: 1.3 KiB |
BIN
equip/coin_2_32.jpg
Normal file
|
After Width: | Height: | Size: 1.6 KiB |
BIN
equip/key_1_32.jpg
Normal file
|
After Width: | Height: | Size: 2.3 KiB |
BIN
equip/key_2_32.jpg
Normal file
|
After Width: | Height: | Size: 3.1 KiB |
BIN
equip/main_e1_32.jpg
Normal file
|
After Width: | Height: | Size: 3.6 KiB |
BIN
equip/main_e2_32.jpg
Normal file
|
After Width: | Height: | Size: 3.0 KiB |
BIN
equip/rune_1_32.jpg
Normal file
|
After Width: | Height: | Size: 3.0 KiB |
BIN
equip/rune_2_32.jpg
Normal file
|
After Width: | Height: | Size: 2.8 KiB |
BIN
equip/sword_1_32.jpg
Normal file
|
After Width: | Height: | Size: 1.7 KiB |
BIN
equip/sword_2_32.jpg
Normal file
|
After Width: | Height: | Size: 1.8 KiB |
BIN
equip/sword_3_32.jpg
Normal file
|
After Width: | Height: | Size: 2.2 KiB |
BIN
equip/sword_4_32.jpg
Normal file
|
After Width: | Height: | Size: 2.3 KiB |
BIN
equip/sword_5_32.jpg
Normal file
|
After Width: | Height: | Size: 2.6 KiB |
BIN
equip/sword_e1_32.jpg
Normal file
|
After Width: | Height: | Size: 3.3 KiB |
BIN
equip/sword_e2_32.jpg
Normal file
|
After Width: | Height: | Size: 2.7 KiB |
@@ -3,13 +3,10 @@ from time import time
|
||||
from window_capture import WindowCapture
|
||||
from vision import Vision
|
||||
import cv2 as cv
|
||||
import pytesseract
|
||||
from hsvfilter import HsvFilter
|
||||
from config_file import UserConfigs
|
||||
# import pyautogui
|
||||
import pydirectinput
|
||||
import keyboard
|
||||
from tresh_util import super_tresh_main, super_tresh_needle
|
||||
|
||||
EMITTER_MAIN = "main"
|
||||
EMITTER_MUSH = "mushroom"
|
||||
|
||||
@@ -1,67 +0,0 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
|
||||
image = cv2.imread("dig/digging.jpg")
|
||||
|
||||
cv2.imshow("Image", image)
|
||||
|
||||
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||
cv2.imshow("gray", gray)
|
||||
|
||||
blur = cv2.GaussianBlur(gray, (5,5), 0)
|
||||
cv2.imshow("blur", blur)
|
||||
|
||||
thresh = cv2.adaptiveThreshold(blur, 255, 1, 1, 11, 2)
|
||||
|
||||
#thresh = cv2.bitwise_not(thresh)
|
||||
|
||||
cv2.imshow("thresh", thresh)
|
||||
#cv2.waitKey()
|
||||
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||||
|
||||
max_area = 0
|
||||
c = 0
|
||||
for i in contours:
|
||||
area = cv2.contourArea(i)
|
||||
if area > 1000:
|
||||
if area > max_area:
|
||||
max_area = area
|
||||
best_cnt = i
|
||||
image = cv2.drawContours(image, contours, c, (0, 255, 0), 1)
|
||||
c+=1
|
||||
|
||||
mask = np.zeros((gray.shape),np.uint8)
|
||||
cv2.drawContours(mask,[best_cnt],0,255,-1)
|
||||
cv2.drawContours(mask,[best_cnt],0,0,1)
|
||||
cv2.imshow("mask", mask)
|
||||
|
||||
out = np.zeros_like(gray)
|
||||
out[mask == 255] = gray[mask == 255]
|
||||
cv2.imshow("New image", out)
|
||||
|
||||
blur = cv2.GaussianBlur(out, (5,5), 0)
|
||||
cv2.imshow("blur1", blur)
|
||||
|
||||
thresh = cv2.adaptiveThreshold(blur, 255, 1, 1, 11, 2)
|
||||
thresh = cv2.bitwise_not(thresh)
|
||||
cv2.imshow("thresh1", thresh)
|
||||
|
||||
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||||
|
||||
squares = []
|
||||
c = 0
|
||||
for i in contours:
|
||||
area = cv2.contourArea(i)
|
||||
cnt_len = cv2.arcLength(i, True)
|
||||
cnt = cv2.approxPolyDP(i, 0.01 * cnt_len, True)
|
||||
if area > 1000/2:
|
||||
squares.append(cnt)
|
||||
#cv2.drawContours(image, contours, c, (0, 255, 0), 1)
|
||||
c+=1
|
||||
cv2.drawContours(image, squares, -1, (0, 255, 0), 1)
|
||||
|
||||
cv2.imshow("Final Image", image)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
||||
@@ -1,94 +0,0 @@
|
||||
import cv2
|
||||
import numpy as np
|
||||
|
||||
|
||||
def super_tresh_main(img):
|
||||
image = img
|
||||
|
||||
# cv2.imshow("Image", image)
|
||||
|
||||
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||
# cv2.imshow("gray", gray)
|
||||
|
||||
blur = cv2.GaussianBlur(gray, (5, 5), 0)
|
||||
# cv2.imshow("blur", blur)
|
||||
|
||||
thresh = cv2.adaptiveThreshold(blur, 255, 1, 1, 11, 2)
|
||||
|
||||
# thresh = cv2.bitwise_not(thresh)
|
||||
|
||||
# cv2.imshow("thresh", thresh)
|
||||
# cv2.waitKey()
|
||||
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||||
|
||||
max_area = 0
|
||||
c = 0
|
||||
for i in contours:
|
||||
area = cv2.contourArea(i)
|
||||
if area > 1000:
|
||||
if area > max_area:
|
||||
max_area = area
|
||||
best_cnt = i
|
||||
image = cv2.drawContours(image, contours, c, (0, 255, 0), 1)
|
||||
c += 1
|
||||
|
||||
mask = np.zeros((gray.shape), np.uint8)
|
||||
cv2.drawContours(mask, [best_cnt], 0, 255, -1)
|
||||
cv2.drawContours(mask, [best_cnt], 0, 0, 1)
|
||||
# cv2.imshow("mask", mask)
|
||||
|
||||
out = np.zeros_like(gray)
|
||||
out[mask == 255] = gray[mask == 255]
|
||||
# cv2.imshow("New image", out)
|
||||
|
||||
blur = cv2.GaussianBlur(out, (5, 5), 0)
|
||||
# cv2.imshow("blur1", blur)
|
||||
|
||||
thresh = cv2.adaptiveThreshold(blur, 255, 1, 1, 11, 2)
|
||||
return cv2.bitwise_not(thresh)
|
||||
|
||||
def super_tresh_needle(img):
|
||||
image = img
|
||||
|
||||
# cv2.imshow("Image", image)
|
||||
|
||||
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
||||
# cv2.imshow("gray", gray)
|
||||
|
||||
blur = cv2.GaussianBlur(gray, (5, 5), 0)
|
||||
# cv2.imshow("blur", blur)
|
||||
|
||||
thresh = cv2.adaptiveThreshold(blur, 255, 1, 1, 11, 2)
|
||||
|
||||
return cv2.bitwise_not(thresh)
|
||||
'''
|
||||
# cv2.imshow("thresh", thresh)
|
||||
# cv2.waitKey()
|
||||
contours, _ = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
|
||||
|
||||
max_area = 0
|
||||
c = 0
|
||||
for i in contours:
|
||||
area = cv2.contourArea(i)
|
||||
if area > 1000:
|
||||
if area > max_area:
|
||||
max_area = area
|
||||
best_cnt = i
|
||||
image = cv2.drawContours(image, contours, c, (0, 255, 0), 1)
|
||||
c += 1
|
||||
|
||||
mask = np.zeros((gray.shape), np.uint8)
|
||||
cv2.drawContours(mask, [best_cnt], 0, 255, -1)
|
||||
cv2.drawContours(mask, [best_cnt], 0, 0, 1)
|
||||
# cv2.imshow("mask", mask)
|
||||
|
||||
out = np.zeros_like(gray)
|
||||
out[mask == 255] = gray[mask == 255]
|
||||
# cv2.imshow("New image", out)
|
||||
|
||||
blur = cv2.GaussianBlur(out, (5, 5), 0)
|
||||
# cv2.imshow("blur1", blur)
|
||||
|
||||
thresh = cv2.adaptiveThreshold(blur, 255, 1, 1, 11, 2)
|
||||
return cv2.bitwise_not(thresh)
|
||||
'''
|
||||