re-implement equipment with masks
This commit is contained in:
14
vision.py
14
vision.py
@@ -27,22 +27,32 @@ class Vision:
|
||||
# TM_CCOEFF, TM_CCOEFF_NORMED, TM_CCORR, TM_CCORR_NORMED, TM_SQDIFF, TM_SQDIFF_NORMED
|
||||
self.method = method
|
||||
|
||||
def find(self, haystack_img, needle_img, threshold=0.5, max_results=10):
|
||||
def find(self, haystack_img, needle_img, threshold=0.5, max_results=10, normalize=False, mask=None):
|
||||
# run the OpenCV algorithm
|
||||
needle_w = needle_img.shape[1]
|
||||
needle_h = needle_img.shape[0]
|
||||
result = cv.matchTemplate(haystack_img, needle_img, self.method)
|
||||
|
||||
if normalize:
|
||||
result = cv.matchTemplate(haystack_img, needle_img, cv.TM_CCORR_NORMED, None, mask)
|
||||
_minVal, _maxVal, minLoc, maxLoc = cv.minMaxLoc(result, None)
|
||||
cv.normalize(result, result, 0, 1, cv.NORM_MINMAX, -1)
|
||||
else:
|
||||
result = cv.matchTemplate(haystack_img, needle_img, self.method)
|
||||
|
||||
# Get the all the positions from the match result that exceed our threshold
|
||||
locations = np.where(result >= threshold)
|
||||
locations = list(zip(*locations[::-1]))
|
||||
# print(locations)
|
||||
_minVal, _maxVal, minLoc, maxLoc = cv.minMaxLoc(result, None)
|
||||
|
||||
# if we found no results, return now. this reshape of the empty array allows us to
|
||||
# concatenate together results without causing an error
|
||||
if not locations:
|
||||
return np.array([], dtype=np.int32).reshape(0, 4)
|
||||
|
||||
if len(locations) > 5000:
|
||||
return np.array([], dtype=np.int32).reshape(0, 4)
|
||||
|
||||
# You'll notice a lot of overlapping rectangles get drawn. We can eliminate those redundant
|
||||
# locations by using groupRectangles().
|
||||
# First we need to create the list of [x, y, w, h] rectangles
|
||||
|
||||
Reference in New Issue
Block a user