re-implement equipment with masks

This commit is contained in:
2022-05-16 14:49:30 +02:00
parent 4ffd873578
commit 7feb318a99
2 changed files with 195 additions and 0 deletions

172
cv_test_2.py Normal file
View File

@@ -0,0 +1,172 @@
from __future__ import print_function
import sys
import cv2 as cv
import numpy as np
from hsvfilter import HsvFilter
use_mask = False
img = None
templ = None
mask = None
image_window = "Source Image"
result_window = "Result window"
match_method = 3
max_Trackbar = 5
def main():
global img
global templ
img = cv.imread("equip/rings/test_screen.jpg", cv.IMREAD_COLOR)
templ = cv.imread("equip/rings/ring_1_32.jpg", cv.IMREAD_COLOR)
hsv = HsvFilter(13, 40, 85, 135, 255, 255, 0, 0, 55, 53)
#img = apply_hsv_filter(img, hsv)
#templ = apply_hsv_filter(templ, hsv)
global use_mask
use_mask = True
global mask
mask = cv.imread("equip/rings/ring_1_32-mask.png", cv.IMREAD_COLOR)
cv.namedWindow(image_window, cv.WINDOW_AUTOSIZE)
cv.namedWindow(result_window, cv.WINDOW_AUTOSIZE)
trackbar_label = 'Method: \n 0: SQDIFF \n 1: SQDIFF NORMED \n 2: TM CCORR \n 3: TM CCORR NORMED \n 4: TM COEFF \n 5: TM COEFF NORMED'
cv.createTrackbar(trackbar_label, image_window, match_method, max_Trackbar, MatchingMethod)
MatchingMethod(match_method)
cv.waitKey(0)
return 0
def draw_rectangles(haystack_img, rectangles):
# these colors are actually BGR
line_color = (0, 255, 0)
line_type = cv.LINE_4
pic = None
for (x, y, w, h) in rectangles:
# determine the box positions
top_left = (x, y)
bottom_right = (x + w, y + h)
# draw the box
cv.rectangle(haystack_img, top_left, bottom_right, line_color, lineType=line_type)
#pic = haystack_img[y:y + h, x:x + w]
return haystack_img
def shift_channel(c, amount):
if amount > 0:
lim = 255 - amount
c[c >= lim] = 255
c[c < lim] += amount
elif amount < 0:
amount = -amount
lim = amount
c[c <= lim] = 0
c[c > lim] -= amount
return c
def apply_hsv_filter(original_image, hsv_filter):
# convert image to HSV
hsv = cv.cvtColor(original_image, cv.COLOR_BGR2HSV)
# add/subtract saturation and value
h, s, v = cv.split(hsv)
s = shift_channel(s, hsv_filter.sAdd)
s = shift_channel(s, -hsv_filter.sSub)
v = shift_channel(v, hsv_filter.vAdd)
v = shift_channel(v, -hsv_filter.vSub)
hsv = cv.merge([h, s, v])
# Set minimum and maximum HSV values to display
lower = np.array([hsv_filter.hMin, hsv_filter.sMin, hsv_filter.vMin])
upper = np.array([hsv_filter.hMax, hsv_filter.sMax, hsv_filter.vMax])
# Apply the thresholds
mask = cv.inRange(hsv, lower, upper)
result = cv.bitwise_and(hsv, hsv, mask=mask)
# convert back to BGR for imshow() to display it properly
img = cv.cvtColor(result, cv.COLOR_HSV2BGR)
return img
def MatchingMethod(param):
global match_method
match_method = param
img_display = img.copy()
method_accepts_mask = (cv.TM_SQDIFF == match_method or match_method == cv.TM_CCORR_NORMED)
if (use_mask and method_accepts_mask):
result = cv.matchTemplate(img, templ, match_method, None, mask)
else:
result = cv.matchTemplate(img, templ, match_method)
#_minVal, _maxVal, minLoc, maxLoc = cv.minMaxLoc(result, None)
cv.normalize(result, result, 0, 1, cv.NORM_MINMAX, -1)
#_minVal, _maxVal, minLoc, maxLoc = cv.minMaxLoc(result, None)
locations = np.where(result >= 0.91)
locations = list(zip(*locations[::-1]))
needle_w = templ.shape[1]
needle_h = templ.shape[0]
find_num = 20
idx_1d = np.argpartition(result.flatten(), -find_num)[-find_num:]
#new_res = result.flatten()[idx_1d]
#new_res.append()
idx_2d = np.unravel_index(idx_1d, result.shape)
rectangles = []
for i in range(0, len(idx_2d[0]), 1):
y = int(idx_2d[0][i])
x = int(idx_2d[1][i])
rect = [x, y, needle_w, needle_h]
# Add every box to the list twice in order to retain single (non-overlapping) boxes
rectangles.append(rect)
rectangles.append(rect)
for loc in locations:
rect = [int(loc[0]), int(loc[1]), needle_w, needle_h]
# Add every box to the list twice in order to retain single (non-overlapping) boxes
#rectangles.append(rect)
#rectangles.append(rect)
rectangles, weights = cv.groupRectangles(rectangles, groupThreshold=1, eps=0.5)
keep_rects = []
for rect in rectangles:
w = rect[0]
h = rect[1]
x = rect[2] + w
y = rect[3] + h
screenshot_pos = img_display[h:y, w:x] # (w, h, x+w, y+h)
result2 = cv.matchTemplate(screenshot_pos, templ, 5)
_minVal2, _maxVal2, minLoc2, maxLoc2 = cv.minMaxLoc(result2, None)
if _maxVal2 >= 0.5:
keep_rects.append(rect)
print("matching error")
res1 = draw_rectangles(img_display, keep_rects)
res2 = draw_rectangles(img, keep_rects)
cv.imshow(image_window, res1)
cv.imshow(result_window, res2)
if __name__ == "__main__":
main()